plus 2000 examples from physics in SearchWorks catalog (2024)

Login My Account Feedback

Reporting from:

Check system status

Responsibility
Dieter Röss.
Uniform Title
Mathematik mit Simulationen lehren und lernen. English
Imprint
Berlin ; Boston : De Gruyter, ©2011.
Physical description
1 online resource (238 pages)
Series
De Gruyter textbook.

Description

Creators/Contributors

Author/Creator
Röss, Dieter, 1932-

Contents/Summary

Contents
  • Introduction; Goal and structure of the digital book; Directories; Usage and technical conventions; Example of a simulation: The Möbius band; Physics and mathematics; Mathematics as the ``Language of physics''; Physics and calculus; Numbers; Natural numbers; Whole numbers; Rational numbers; Irrational numbers; Algebraic numbers; Transcendental numbers; and the quadrature of the circle, according to Archimedes; Real numbers; Complex numbers; Representation as a pair of real numbers; Normal representation with the ``imaginary unit i''; Complex plane; Representation in polar coordinates.
  • Simulation of complex addition and subtractionSimulation of complex multiplication and division; Extension of arithmetic; Sequences of numbers and series; Sequences and series; Sequence and series of the natural numbers; Geometric series; Limits; Fibonacci sequence; Complex sequences and series; Complex geometric sequence and series; Complex exponential sequence and exponential series; Influence of limited accuracy of measurements and nonlinearity; Numbers in mathematics and physics; Real sequence with nonlinear creation law: Logistic sequence.
  • Complex sequence with nonlinear creation law: FractalsFunctions and their infinitesimal properties; Definition of functions; Difference quotient and differential quotient; Derivatives of a few fundamental functions; Powers and polynomials; Exponential function; Trigonometric functions; Rules for the differentiation of combined functions; Derivatives of further fundamental functions; Series expansion: the Taylor series; Coefficients of the Taylor series; Approximation formulas for simple functions; Derivation of formulas and errors bounds for numericaldifferentiation.
  • Interactive visualization of Taylor expansionsGraphical presentation of functions; Functions of one to three variables; Functions of four variables: World line in the theory of relativity; General properties of functions y=f(x); Exotic functions; The limiting process for obtaining the differential quotient; Derivatives and differential equations; Phase space diagrams; Antiderivatives; Definition of the antiderivative via its differential equation; Definite integral and initial value; Integral as limit of a sum; The definition of the Riemann integral; Lebesgue integral.
  • Rules for the analytical integrationNumerical integration methods; Error estimates for numerical integration; Series expansion (2): the Fourier series; Taylor series and Fourier series; Determination of the Fourier coefficients; Visualizing the calculation of coefficients and spectrum; Examples of Fourier expansions; Complex Fourier series; Numerical solution of equations and iterative methods; Visualization of functions in the space of real numbers; Standard functions y=f(x); Some functions y=f(x) that are important in physics; Standard functions of two variables z=f(x, y); Waves in space.
Publisher's summary
Mathematics course with 60 Java-based interactive mathematic simulations by the author Comprehensive and systematically organized collection of 2,000 Java-based physics simulations All simulations are runnable, and can be accessed both on- and offline Visualization of mathematic relationships Facilitates an experiment-based understanding of problems, including suggestions for your own mathematical experiments Calculation procedures can be adjusted in a variety of ways Introduction to simulation techniques with the EJS (Easy Java Simulation) tool Visual interface for simple and transparent modeling and programming Building block library for programming one's own simulations Quick access to simulations from links embedded in the digital text Mathematics is the language of physics and technology. Yet in the age of computers, mathematic skill is not based on mastery of arithmetic. Rather, it depends on understanding relationships in time and space, and expressing them with precise and clear formulas. In this regard, one cannot rely on the rote memorization of rules and formulas - insight and intuitive understanding are crucial. But how can this understanding be achieved in higher mathematics, which depends on abstract concepts such as complex numbers, real and complex infinite series, infinitesimal calculus, 2, 3, and 4 dimensional functions, conformal maps, vectors, and linear and nonlinear ordinary and partial differential equations? The author takes a highly practical approach to facilitating the insight essential for true learning in mathematics. Students can work directly with the simulation programs, can visualize relationships, and creatively interact with the calculation procedures. Proceeding in textbook fashion, the work makes use of a broad palette of multimedia tools, and features numerous interactive calculation programs for mathematical experimentation. Students merely have to select one of the many predefined examples and set the relevant parameters - and in a flash the results are graphically displayed in 2 or 3 dimensions. In addition, the specific functions used can be changed or even newly formulated according to user preferences. For example, a procedure developed for a fourth degree power function for the numerical calculation of zero points can be adapted for use with another function. Each simulation is accompanied by a detailed description, instructions for use, and numerous suggestions for experimentation. The mathematical simulations are based on the Easy Java Simulation (EJS) programming tool. All of the files developed with EJS are completely open and transparent. The user can even draw on the examples as building blocks for the development his or her own calculation procedures. The appendix contains a short introduction to EJS. The work is enriched by a comprehensive collection of cosmological simulations as well as models from the Open Source Physics project, organized by subject area. Intended as a systematic collection of methods and materials for upper-secondary school teachers and as a course for students of physics and mathematics, the work facilitates hands-on and experiment-driven learning in higher mathematics. The print version contains the electronic text and simulations for offline use. For questions concerning download or online access to the simulations, please contact service@degruyter.com.
(source: Nielsen Book Data)

Subjects

Subjects
Mathematics > Study and teaching > Simulation methods.
Physics > Study and teaching > Simulation methods.
Mathematics > Textbooks.
Physics > Textbooks.
MATHEMATICS >
Mathematics.
Physics.
Genre
Textbooks.

Bibliographic information

Publication date
2011
Series
De Gruyter Textbook
ISBN
9783110250077 (electronic bk.)
3110250071 (electronic bk.)
128339992X
9781283399920
9783110250053
3110250055

Browse related items

Start at call number:

View full page

Librarian view | Catkey: 13034906

plus 2000 examples from physics in SearchWorks catalog (2024)

References

Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 6075

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.